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Online healthcare forums (OHFs) have become increasingly popular for patients to share their health-related experiences. The
healthcare-related texts posted in OHFs could help doctors and patients better understand specific diseases and the situations of
other patients. To extract the meaning of a post, a commonly used way is to classify the sentences into several predefined
categories of different semantics. However, the unstructured form of online posts brings challenges to existing classification
algorithms. In addition, though many sophisticated classification models such as deep neural networks may have good
predictive power, it is hard to interpret the models and the prediction results, which is, however, critical in healthcare
applications. To tackle the challenges above, we propose an effective and interpretable OHF post classification framework.
Specifically, we classify sentences into three classes: medication, symptom, and background. Each sentence is projected into an
interpretable feature space consisting of labeled sequential patterns, UMLS semantic types, and other heuristic features. A forest-
based model is developed for categorizing OHF posts. An interpretation method is also developed, where the decision rules can
be explicitly extracted to gain an insight of useful information in texts. Experimental results on real-world OHF data
demonstrate the effectiveness of our proposed computational framework.

1. Introduction

The past few years have witnessed the increasing popularity
of online health forums (OHFs), such as WebMD Discus-
sions and Patient, as communication platforms among
patients. According to a survey by PwC in 2012, 54% of
1060 participants are comfortable with their doctors getting
information related to their health conditions from online
physician communities [1]. OHFs can be used for patients
to ask for suggestions and share experiences. The abundant
user-generated content related to healthcare on the OHFs
could provide insightful information to the other patients,
medical doctors, and decision makers to promote the under-
standing about diseases and the health conditions of patients.

To extract insightful information from OHF posts, a
commonly adopted strategy is to split posts into sentences
and classify each sentence into different categories according

to their semantical meanings [2, 3]. For example, Figure 1
shows a post from an OHF called patient.info (https://
patient.info/forums). We highlight the sentences about
symptoms in orange, and the one about medication in violet.
The former ones provide the information about the user’s
symptoms, reflected by the terms “heartburn,” “acid reflux,”
“abdominal pain,” and “IBS.” The latter one tells the user’s
medication treatment, where the term “nexium” presents
the medication for the disease. These pieces of information
can help other users to gain a more comprehensive under-
standing of the disease.

However, it is a challenging task to effectively analyze the
expressions in online health forums. First, the user-generated
content in OHFs is usually unstructured and contains
background information that is relatively less important to
analyze [3]. The irregularity and noises in data impede us
from directly applying existing classification models to
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analyze posts automatically. A more sophisticated classifi-
cation framework is needed for processing unstructured
data in OHFs, in order to extract useful patterns (e.g.,
terms, text sequences) for accurate categorization. Second,
when categorizing post sentences into different classes, it
is difficult tomake the tradeoff between classification accuracy
and interpretability [4, 5]. In health-related tasks, besides
desirable classification performance, human-understandable
explanations for classification results are also crucial, because
patients or doctorswill not take the risk to trust the predictions
they do not understand. Complex models (e.g., deep neural
networks, SVM) are accurate in classification, but they do
not directly provide the reasons for individual classification
results. Simple models such as linear classifiers and decision
trees can provide interpretations along with classification
outcomes, but usually they cannot achieve comparable perfor-
mances as complex models.

In this paper, we propose an effective framework for ana-
lyzing OHF posts. We propose to develop a random forest
model to classify the sentences into three categories, that is,
medication, symptom, and background, in order to get an
accurate understanding of the role of each sentence in the
overall expression of the health situation. Besides, human-
understandable interpretations for classification results are
generated for the forest model. To enable interpretation, the
features involved in the classification task are designed in a
human-understandable manner. Moreover, the contribution
of features to a classification instance can be explicitly
measured by the decision rules constructed during training
process [6–8]. Specifically, we represent healthcare-related
sentences with various semantic features such as labeled
sequential patterns (LSPs), UMLS semantic type features
[3], and sentence-based and heuristic features. LSPs repre-
sent the frequent tag-based patterns in texts. UMLS features
indicate the existence terminologies defined by domain
experts. In this way, each unstructured sentence is mapped
to the feature space which facilitates further analysis. Also,
word-based and heuristic information can also be used to
enhance the classification performance. The contributions
of this paper are summarized as follows:

(i) We propose a forest-based framework to deal with
the healthcare-related text classification problem.

Labeled sequential pattern features are involved in
characterizing the unstructured healthcare-related
texts from both syntactic and semantic levels.

(ii) We develop a method for constructing decision rules
integrated from decision trees in forest-based
models to achieve model interpretability.

(iii) The effectiveness and interpretability of our frame-
work are demonstrated through experiments on a
real OHF dataset, where we analyze the interpreta-
tions provided by our framework in detail.

2. Framework Overview

In this section, we will briefly introduce each module of our
proposed framework (Figure 2) including data preprocess-
ing, interpretable feature extraction, and forest-based models
for classification and interpretation. We categorize each
sentence of posts into one of the three categories:medication,
symptom, and background. The definition of each category is
given as follows.

(i) Medication: If a sentence contains information
relevant to curing diseases, treating any medical
conditions, relieving any symptoms of diseases, or
preventing any diseases, then we assign the sentence
to the medication category.

(ii) Symptom: If a sentence contains any contents
relevant to departures from normal functioning or
feelings of individuals, which may express the
phenomenon affected by diseases, we assign the
sentence to the symptom category.

(iii) Background: If a sentence cannot be classified to the
medication or symptom category, then we assign the
sentence to background category.

Given a sentence “I am taking 90 units Lantus twice a
day” for classification, for example, we will first convert it
into an instance in a feature space through preprocessing to
identify the number term “90,” the drug term “Lantus,” the
frequency term “twice a day,” the context of each term, and

Nexium diet
Posted 11 days ago

I started seeing a gastroenterologist the other day because I’ve been
experiencing a lot of heartburn/acid re�ux. He gave me nexium to relieve the
symptoms while we do some tests, but he didn’t give me any information about
diet, so now I’m wondering if anyone else has taken this and gotten any
information about it. Since we don’t know what is causing the symptoms yet I’m
having trouble �nding dietary advice, I’m just wondering if there are any foods
that will make either the original symptoms or the side e�ect worse. I’m
currently experiencing some abdominal pain that feels pretty much the same as
the pain I get when I’m having an IBS episode, but I haven’t had a bowel
movement yet. �is also did not happen yesterday, when I took the �rst pill, so
I’m wondering if it may be related to diet.

Figure 1: An example of an online health forum post.
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so forth. Then, we will use the forest-based model to classify
the sentence, along with the explanations based on the
discriminative features identified by the model.

2.1. Module 1: Preprocessing and Labeling. In this module, we
split the collected online health community posts into
sentences and manually assign each sentence one label from
the classes {medication, symptom, background}. Formally,
let ℍ be the healthcare-related natural language space and
L = medication, symptom, and background be the target
label space. Suppose a collection of N labeled sentences

= si, li ∣1 ≤ i ≤N , si ∈ℍ, li ∈ L 1

are available for model training and testing; si represents the
original text of the ith sentence and li represents the label of
the ith sentence. In other words, each sentence is labeled as
medication, symptom, or background.

2.2. Module 2: Interpretable Feature Extraction. In this
module, we propose the feature extraction method
f ℍ→ℝD to convert healthcare-related sentences into
instances in a D-dimensional numerical space, where D is
the number of features used to represent each sentence. In
this way, we can represent each unstructured sentence with
a numerical vector, which facilitates model training and
testing. After that, the overall dataset is transformed to

= f = xi, li ∣1 ≤ i ≤N , 2

where is the original labeled sentence dataset and N is
the number of sentences, while xi = x1, x2,…, xD is the
resultant numerical instance represented by D features.
These features are also intuitive and insightful to help people
better understand the sentences. We will discuss this module
in detail in Section 3.

2.3. Module 3: Forest-Based Models for Classification and
Interpretation. In this module, the task is to train a model

F ℝD →L that can classify an instance into a class from
medication, symptom, or background and interpret the

sentences belonging to class medication and symptom.
We mainly introduce building forest-based models to classify
and interpret the instances: (1) random forests [9] are grown
on the numerical instances obtained from the feature engi-
neering module, which can be interpreted by the features of
higher importance according to some criterion, for example,
Gini impurity. (2) DPClass [8] is a method based on random
forest models to extract discriminative combinations of
decision rules in the forest, which can be implemented
by using forward selection to choose the top combinations.
This module will be discussed in detail in Section 4.

3. Extracting Interpretable Features

Interpretable features play an essential role in enabling users
to understand prediction results. In this section, we discuss
how to convert health-related sentences into instances in
numerical feature space composed of labeled sequential pat-
terns, UMLS semantic type features, sentence-based features,
and heuristic features. The method of extracting labeled
sequential patterns is introduced in detail.

3.1. Labeled Sequential Patterns. In sentence classification, if
we simply use bag of words to represent each sentence, the
overall data matrix will be huge and sparse, because there
are a large number of terms, and many terms only occur in
few sentences about some specific diseases. It is undesirable
to use these raw terms to explain their correlations with sen-
tence category as interpretations for classification results.
The reason is that the raw terms do not explicitly specify
the semantics of words, or contain the structural information
of sentences. Therefore, we propose to use higher-level
features to represent a sentence rather than words. We will
rely on these higher-level features to interpret the sentences
classification results.
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Figure 2: An overview of the interpretable classification framework.
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3.1.1. Labeled Sequence Mapping. We first extract labeled
sequences as preliminary representations of sentences [10].
A labeled sequence is in the form sequence→ label, where
sequence is a sequence of tags and label is the class label. To
convert a sentence into a sequence, we use the tags in
Table 1 to replace the words in the sentence. Words with sim-
ilar semantics are mapped to the same tag. For example, the
medication sentence “I am taking 90 units Lantus twice a
day” can be converted into tag-word pairs ((PRP, “I”),
(VBP, “am”), (VBG, “taking”), (CD, “90”), (NNS, “units”),
(DRUG, “Lantus”), (FREQ, “twice a day”)) and the entire
sentence is represented as a labeled sequence: (PRP, VBP,
VBG, CD, NNS, DRUG, FREQ)→medication.

Given a training set of labeled sentences =
s1, l1 ,…, sn, ln , we convert each pair into a labeled

sequence pi → li by applying the method mentioned above
so that we can obtain the database of labeled sequences.
Our next goal is to mine the frequent patterns in the labeled
sequences from and adopt these frequent patterns as fea-
tures to capture the characteristics of the healthcare-related
sentences. This task can be divided into two steps: (1) fre-
quent sequential pattern mining and (2) building frequent
labeled sequential patterns.

3.1.2. Frequent Sequential Pattern Mining. We now focus on
mining the frequent sequential patterns from database .
Before that, we first define sequential pattern as follows.

Definition 1. A sequential pattern is a sequence of tags which
is a subsequence of one or more sequences in the database.
The adjacent tags are not necessarily adjacent in the original
sequences, but their distance should be not greater than a
threshold in the original sequences, which is set as 5 in
experiments [10].

For example, given two labeled sequences
a, b, c, d, e, f → l1 and a, c, d, e, g, h → l2 in the database
, a, c, e can be considered as a sequential pattern of both

sequences. Note that a sequence is different from a labeled
sequence. The former only consists of the sequence of tags,
while the latter includes the mapping from sequence to the
label, that is, Pi → li.

Definition 2. A frequent sequential pattern (FSP) is a sequen-
tial pattern p′ with sup p′ ≥ μ, where μ is a customized
threshold and sup p′ denotes the support of p′ in , that is,

sup p′ =
p∣p contains p′, p ∈

, 3

where p is any sequence in the database that contains p′.
sup p′ represents the percentage of the sequences in the
database that contain p′, which shows the generality of p′ in
the database .

There are several algorithms to mine frequent patterns
from a database. We select CM-SPAM [11] to obtain FSPs
from . The minimum threshold μ is customized by users
such that the resultant FSPs would be general enough.

3.1.3. Frequent Labeled Sequential Patterns. With FSPs
available, the next step is to select a subset of promising FSPs
called frequent labeled sequential patterns (FLSPs) which are
then used for classification.

Note that we have two classes: medication and symptom;
thus, the FLSPs are different for each class. Formally, an
FLSP of label l is defined as the FSP with high confidence
with respect to l. Given a specific label l, the confidence of
a frequent sequential pattern p′, denoted by conf p′ , is
computed as

conf p′ =
p∣p contains p′, p→ l ∈

p∣p contains p′, p ∈
, 4

which is the ratio of sequences that contain the FSP p′ and are
labeled l to the sequences containing the FSP p′. FSPs with
high confidence show strong relations to the given label l,
since a large portion of those frequent sequential patterns
are labeled as l.

We would also like to set the minimum support threshold
to a small percentage in order to include more FSPs. In our
experiments, we set the minimum support to 5%. Besides,
the minimum confidence threshold might also not necessar-
ily be set very large since we would like to obtain more FLSPs
by reducing some predictive ability of them in the early stage.
In the experiments, we set the minimum confidence to 85%
[10]. Algorithm 1 shows the entire process of generating
FLSPs from text data.

Finally, we obtain a set of FLSPs, which can be used as
features to identify the relationship between labels and
patterns in sentences [12]. We use each frequent labeled
sequential pattern as a feature. For each instance in the train-
ing set, if its mapped sequence contains a FLSP, we will set the
value of the corresponding feature entry to 1; otherwise 0.

3.2. UMLS Metathesaurus Semantic Types. In addition to
FLSPs, we also use UMLS [13] Metathesaurus semantic types
as features. There are 133 UMLS Metathesaurus semantic
types in total. By using the third-party software MetaMap
(https://mmtx.nlm.nih.gov/) [14], we can map the sentence

Table 1: Tags introduction.

Tag Description

CC, CD, DT, EX, and so on Part-of-speech tags (https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html)

DRUG Medications or drug terms (http://www.webmd.com/drugs/index-drugs.aspx?show=drugs)

SYMP Symptom terms (http://symptomchecker.webmd.com/symptoms-a-z)

FREQ Frequency phrases (customized regular expressions)
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to these semantic types (https://mmtx.nlm.nih.gov/Docs/
SemanticTypes_2013AA.txt). Thus, for each semantic type
feature, we set the value to 1 if the sentence contains any
phrases related to the semantic type; otherwise, 0.

Generally, for each sentence si in , it is converted into xi
which is a representation vector of the sentence in the feature
space of FLSPs and the UMLS semantic types. If si contains
any FLSPs or phrases related to UMLS semantic types, the
value of the corresponding feature entry in xi is set to 1.

3.3. Sentence-Based Features. Sentence-based features are
capable of representing the sentence in a direct way [3]. In
this paper, we use the following sentence-based features to
represent sentences.

3.3.1. Word-Based Features. Although word-based features
such as bag-of-word representation usually suffer from the
curse of dimensionality, we still take them into account to
compare the classification performance because of their
effectiveness [15]. Unigrams and bigrams can capture those
significant and frequent words or phrases related to a specific
label. For example, it is likely that a sentence is classified into
medication category if the word “prescribe” occurs. Each
unigram or bigram corresponds a binary feature to indicate
if a sentence contains this feature or not.

3.3.2. Morphological Features. Capitalized words and abbre-
viations can be good indicators of whether there are any
medical terminologies in the sentence, which could be highly
related to medication or symptom sentences. We can use two
binary features to indicate whether the sentence contains any
capitalized words or abbreviations, respectively.

3.4. Heuristic Features. In addition to all the features
originated from the texts of the sentences, we can also adopt
useful side information of posts [3]. Specifically, a sentence

written by the thread creator is more likely to be symptom-
related compared to the one written by the other users,
because thread creators tend to ask for help from other users
by posting their own conditions. Besides, the position of the
post which a sentence is from can also indicate the cate-
gory, because the first post written by the thread creators
are usually describing the patients’ situations, while the
latter posts tend to answer the potential questions that
arise in the first couple of posts. Thus, two binary features
are considered to indicate whether a sentence is written by
the thread creator, and the position of the post which the
sentence is from, respectively.

In general, we can select different combinations of the
features introduced in this section to represent health-
related sentences and then build models to predict the
categories of sentences with interpretations.

4. Interpretable Classification with
Forest-Based Models

In this section, we first introduce the classification of health
forum sentences using a random forest model and how to
interpret the forest model with features of high importance.
Second, we introduce how to collect rules from decision trees
in the forest to construct a new pattern space [8] and achieve
the interpretability by selecting the top patterns.

4.1. Classification with Random Forests. A random forest
consists of an ensemble of tree-based classifiers and calcu-
lates the votes from the trees for the most popular class in
classification problems [9]. The growth of the ensemble is
determined by the growth of each tree therein. The process
of tree growth is introduced as follows [16]:

(1) Sample NT instances at random with replacement
from the training set. The samples will then be used
to grow the tree model.

(2) A subset of m features are selected from the total D
features at random, where m≪D. The best split on
them features will be used to construct the tree nodes
such that the Gini impurity for the descendants will
be less than that of the parent node, using the method
introduced in CART [17]. The value of m remains
constant during the forest growing process.

(3) Each tree grows to the maximum size without
pruning.

When growing a tree using the samples from the original
training set, about one-third of the instances in the training
set are left out of the samples selected at random. This out-
of-bag data will be an unbiased estimate of the classification
accuracy for the currently growing tree and also can be used
to estimate features importance.

4.2. Interpretation with Discriminative Features. The classifi-
cation mechanism of a random forest is explained through a
set of decision paths. To interpret random forest models, we
propose to quantify the contributions of node features, rank

Input : A collection of labeled sentences , a minimum
support threshold sup, and a minimum confidence
threshold conf

Output : A collection of FLSPs denoted as
Labeled sequence database ≔∅;
for each sentence sample (si, li) in do

Convert si into a sequence pi that consists of POS tags,
DRUG, SYMP, and FREQ;
lsi ≔ pi → l;
≔ ∪ lsi ;

end
FSP set ′ := CM-SPAM , sup [11];
FLSP set ≔∅;
for each FSP p′ in ′ do

if conf p′ ≥ conf then
≔ ∪ p′ ;

end
end
return

Algorithm 1: Frequent Labeled Sequential Patterns
Generation.
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them according to their contributions, and find out the most
discriminative ones [7, 18].

For a decision tree in the random forest, its decision
function can be formulated as follows:

f x = 〠
M

m=1
cmI x, Rm , 5

where M is the number of leaf nodes in the tree. cm denotes
the criterion score, which is a scalar in regression problems
or a vector in classification problems, learned from the train-
ing process. x is the input sample. Rm is the path from the
root to themth leaf node. I ·, · is an indicator function iden-
tifying whether x is run through Rm. As we are solving a clas-
sification problem, cm and f x should be vectors whose sizes
are the number of the classes. The ith value in the vector f x
represents the criterion score of the instance x being classi-
fied into the ith class, which can be converted to a probability
value by normalization. In our problem of classification, an
input instance x is classified into one class from the classes
medication, symptom, background according to the maxi-
mum probability specified by f x of the decision tree.

From another perspective, we can observe how a feature
contributes to the criterion score (i.e., Gini impurity or
entropy) vector by calculating the score vector difference
between the current node and the next node in the path.
The final prediction result along a tree path is determined
under the cumulative influences of nodes in the path.
Therefore, a prediction can be defined as a sum of feature
contributions plus a bias:

f t x = 〠
D

k=1
FCt,k x + βt , 6

where FCt,k x is the feature contribution vector from the kth
feature in the tth tree for an input vector x,D is the number of
features, and βt is the bias of tree t. Both FCt,k x and βt are
criterion score vectors. Our goal is to calculate the feature
contributions for an instance x classified by a decision tree t
that has been trained on the training set. Specifically, it is
achieved by running through the decision paths in tree t.
On the root node in the path, FCt,k x = 0 and f t x is initial-
ized to βt . Each time the instance arrives at a node with a
decision branch on the rth feature, and FCt,r x will be
incremented by the difference between the criterion scores
at the child node along the path and the current node.
Once the decision process of x reaches a leaf node, we
assign a class to x and obtain all feature contributions
along the decision path.

The prediction function of a forest, which is an ensem-
ble of decision trees, takes the average of the predictions of
its trees:

F x = 1
T
〠
T

t=1
f t x , 7

where T is the number of trees in the forest. Similarly, the
prediction function of a forest can also be decomposed with
respect to feature contributions:

F x = 1
T
〠
T

t=1
〠
D

k=1
FCt,k x + βt

= 〠
D

k=1

1
T
〠
T

t=1
FCt,k x + 1

T
〠
T

t=1
βt ,

8

where FCt,k is the contribution of the kth feature in the tth
tree. Therefore, the contribution of the kth feature to classify
an instance x can be defined as

FCk x = 1
T
〠
T

t=1
FCt,k x , 9

and the bias of the forest β = 1/T∑T
t=1βt . The idea of inter-

preting the random forest model, which classifies sentences
into medication or symptom category, is to find out those
features with the most contribution to leading an instance
to medication or symptom leaf nodes. We will not interpret
background sentences since they are not as informative as
the other two classes.

Suppose a random forest model F x is constructed given
the training set = xi, li ∣1 ≤ i ≤N with N labeled
instances. To find out the important features for category
medication and symptom, we select two subsets of training sets
whose labels are medication and symptom, respectively. Let

M = x, l ∣ x, l ∈ , l =medication be the subset ofmedi-
cation instances and S = x, l ∣ x, l ∈ , l = symptom be
the subset of symptom instances; the average feature contribu-
tions for the two classes can be calculated as follows:

FCM,k =
1
M

〠
x,l ∈ M

FCk x ,

FCS,k =
1
S

〠
x,l ∈ S

FCk x ,
10

where FCM,k and FCS,k are the positive contribution vectors
of the kth feature for medication class and symptom class,
respectively. After computing the contribution of features
for each class, we rank these features to indicate their relative
significance. Finally, the ones with larger contribution are
selected as the discriminative features of each class.

4.3. Interpretation with Discriminative Patterns. To further
exploit interpretability, we extract decision rules from the
forest model to form a new space, where the forward selec-
tion is applied to select the top discriminative decision rule
combinations, that is, discriminative patterns [8].

Specifically, a pattern is defined as the form of

xi,j1 ≤ vj1 ∧ xi,j2 > vj2 ∧⋯∧ xi,jk ≤ vjk , 11

where xi,j is the value on feature j of instance xi and vj is a
scalar threshold. In our problem, a pattern can be any
combination of rules from a decision tree. Furthermore,
discriminative patterns (DPs) are those strong signaling
patterns with high information gain or low Gini impurity
in classification. In our problem, a pattern refers to a
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complete decision path, and a discriminative pattern is the
path with low Gini impurity.

However, since the dimension DP of discriminative
patterns is still high, we need to identify the most infor-
mative ones from them. To this end, we apply forward
selection [19] to select the top K discriminative patterns.
Let f s be the forward selection function, then we have

f s 0, 1 DP → 0, 1 K . We run K iterations, where the DP
set at iteration k is denoted as Patk. At iteration I, we traverse
the discriminative patterns dpj ∉ PatI−1. A temporary DP
set PatI j at current iteration is built by adding dpj to the
DP set obtained in iteration I − 1, that is,

PatI j = PatI−1 ⋃ dpj 12

Then, we build a classifier using support vector machines
[20] based on the selected patterns PatI j and obtain the accu-
racy accI j of the classifier. The best pattern dpj∗ is added into
the DP set, where j∗ = argmax jPatI j and accI j∗ > accI−1, so
that PatI = PatI j∗. After K iterations, we obtain the top K
discriminative patterns PatK . At last, each instance x in the
dataset is mapped to the DP space as y ∈ 0, 1 K . If the kth
pattern appears in x, then the corresponding entry yk is set
to 1; otherwise, 0.

5. Results and Discussions

In this section, first we present the experiments results which
show that the forest-based models outperform the baseline
methods. Second, we compare the interpretability between
Lasso and our forest-based model by analyzing their discrim-
inative features and discriminative patterns.

5.1. Experimental Setup

5.1.1. Dataset. Since there are few datasets available for
health-related texts classification, we created our dataset by
collecting texts from online health communities to solve this
problem. The data used for the experiment in this study were
crawled from patient.info (http://patient.info/forums) using
Scrapy, a python framework. The ground truth was obtained
by assigning a label to each sentence in the data set. 257,187
discussions in 616 subforums from the forum were crawled.
Then, we used NLTK tokenize package (http://www.nltk.
org/api/nltk.tokenize.html) to split the texts in each discus-
sion into a list of sentences. Given lists of sentences from all
the discussions, we randomly select sentences from each list
in portion and the number of selected sentences is 2585.
We recruited two volunteers to complete the labeling work.
Both volunteers were provided with the total 2585 randomly
selected sentences and asked to categorize each of the
sentences into medication, symptom, or others. The labeled
sentences were merged based on unanimous voting. We dis-
carded the sentences that were labeled with disagreements
and obtained 2099 sentences categorized into the same label.
The result of the sentences labeling is in Table 2. In the exper-
iments, we set the label of class background, medication, and
symptom to 0, 1, and 2, respectively.

5.1.2. Baseline Methods. The contributions of our study we
want to claim are how much improvement of the perfor-
mance our proposed method can achieve by introducing
the labeled sequential patterns as features and how the inter-
pretability can be enabled by applying our proposed methods
to sentence representatives in a variety of spaces to gain an
insight of the health-related text classification model. To
show the first contribution, we choose support vector
machines trained on a variety of features proposed in [3].
We built binary classification SVM models for class

medication and symptom with RBF kernel exp −γ x− x′ 2
,

where γ is the reciprocal of the number of features. To predict
an instance, the SVMmodels calculate the probabilities using
Platt scaling. If the probabilities to classify the instance into
medication and symptom are both less than 0.5, then we
classify the instance into class background; otherwise, it is
classified into the class with greater probability. In order to
ensure the performance, we implement feature selection
based on entropy using a decision tree model. In terms of
the second contribution, we compare the model interpret-
ability between Lasso [21] to random forests and DPClass
and interpret the models using the features with nonzero
weights in Lasso with L1 term coefficient set to 0.001.

5.1.3. Evaluation Metrics. The metrics for the evaluation are
accuracy, weighted average precision, weighted average
recall, and weighted average F1 score. For multiclass classifi-
cation, the weighted average precision, recall, and F1 score
can be computed as follows:

precision = 1
N
〠
l∈L

Nl precisionl,

recall = 1
N
〠
l∈L

Nl recalll,

F1 =
1
N
〠
l∈L

NlF1l,

13

where N is the size of the test set, L is the label set, that is,
L = medication, symptom, background , Nl is the size of
the test subset with label l, and precisionl, recalll, and F1l
are the precision, the recall, and the F1 score of the binary
classification for instances with label l.

5.2. Classification Performance Evaluation. Table 3 shows the
evaluation of each model using 5-fold cross validation.
Each row represents the evaluation results of a model
trained on data in different feature spaces. Each type of
features used for training models are the ones selected
with entropy-based methods, so that they are more infor-
mative and more discriminative in classification. For each
model, the average accuracy (Acc), weighted average preci-
sion (Prec), recall (Rec), and F-score (F1) for medication

Table 2: Labeled sentences result.

Med. Symp. Others Total

1127 772 200 2099
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class (M), symptom class (S), and the overall classes are
presented, respectively.

For the SVM model, the entire average predicting accu-
racy achieves 79.8% with only word-based features, which
outperforms the accuracies of Lasso. SVM also performs very
well in terms of precision, recall, and F1 score. The model
trained on LSP features alone fails to outperform the model

trained on word-based features, but the former could achieve
better performance than the latter if we add the UMLS
semantic type features. Note that there are only hundreds
of LSP features while there are more than 16 k word-based
ones. Without feature selection, the performance of SVM is
not very good, since the word-based features are considerably
sparse. Furthermore, SVMs with RBF kernels do not provide

Table 3: Model evaluation. We evaluate each model using 5-fold cross validation. Each of the average accuracy, weighted average precision,
weighted average recall, and weighted average F-score for medication class, symptom class, and the overall performance is presented in each
column. Each row represents the performance of each model trained on different feature combinations.

Ft. set M. Acc. M. Prec. M. Rec. M. F1. S. Acc. S. Prec. S. Rec. S. F1. Acc. Prec. Rec. F1.

Select + SVM

Word-based 0.843 0.846 0.867 0.856 0.886 0.875 0.804 0.838 0.798 0.808 0.798 0.802

+ Semantic 0.851 0.854 0.871 0.862 0.884 0.874 0.801 0.836 0.804 0.816 0.804 0.808

+ Position 0.843 0.846 0.867 0.856 0.886 0.875 0.805 0.838 0.798 0.808 0.798 0.802

+ Thr. Crt. 0.844 0.846 0.867 0.857 0.896 0.894 0.814 0.852 0.800 0.812 0.800 0.805

+ Morpho. 0.848 0.855 0.864 0.859 0.891 0.883 0.811 0.846 0.801 0.816 0.801 0.807

+ Word Cnt. 0.802 0.785 0.871 0.826 0.864 0.888 0.722 0.796 0.761 0.773 0.761 0.763

LSP 0.799 0.894 0.709 0.790 0.831 0.862 0.644 0.737 0.691 0.821 0.691 0.731

+ Semantic 0.849 0.865 0.852 0.858 0.891 0.878 0.818 0.846 0.806 0.823 0.806 0.813

+ Position 0.841 0.851 0.852 0.851 0.893 0.883 0.817 0.848 0.800 0.815 0.800 0.806

+ Thr. Crt. 0.844 0.852 0.859 0.855 0.897 0.885 0.826 0.855 0.801 0.814 0.801 0.807

+ Morpho. 0.851 0.860 0.864 0.861 0.896 0.883 0.826 0.854 0.808 0.820 0.808 0.813

+ Word Cnt. 0.848 0.856 0.862 0.859 0.897 0.884 0.830 0.856 0.807 0.819 0.807 0.812

+ Word-based 0.810 0.810 0.844 0.826 0.870 0.887 0.739 0.806 0.768 0.792 0.768 0.776

Lasso

Word-based 0.794 0.730 0.979 0.837 0.886 0.969 0.712 0.820 0.791 0.785 0.791 0.756

+ Semantic 0.793 0.741 0.947 0.831 0.886 0.923 0.752 0.828 0.789 0.754 0.789 0.757

+ Position 0.795 0.742 0.947 0.832 0.886 0.920 0.754 0.829 0.790 0.757 0.790 0.758

+ Thr. Crt. 0.796 0.745 0.945 0.833 0.889 0.922 0.762 0.834 0.791 0.756 0.791 0.759

+ Morpho. 0.797 0.745 0.947 0.834 0.889 0.924 0.759 0.833 0.792 0.757 0.792 0.760

+ Word Cnt. 0.798 0.746 0.947 0.834 0.891 0.927 0.762 0.836 0.793 0.759 0.793 0.762

LSP 0.715 0.663 0.955 0.782 0.802 0.875 0.538 0.666 0.711 0.678 0.711 0.665

+ Semantic 0.769 0.712 0.955 0.816 0.861 0.911 0.689 0.785 0.767 0.727 0.767 0.728

+ Position 0.767 0.710 0.955 0.814 0.860 0.910 0.686 0.782 0.765 0.716 0.765 0.725

+ Thr. Crt. 0.771 0.715 0.953 0.817 0.864 0.911 0.700 0.791 0.769 0.728 0.769 0.731

+ Morpho. 0.771 0.715 0.953 0.817 0.864 0.910 0.698 0.790 0.769 0.728 0.769 0.730

+ Word Cnt. 0.771 0.715 0.953 0.817 0.864 0.910 0.698 0.790 0.769 0.728 0.769 0.730

+ Word-based 0.799 0.745 0.950 0.835 0.893 0.930 0.765 0.839 0.795 0.759 0.795 0.763

Forest-based

Word-based 0.848 0.795 0.969 0.873 0.881 0.891 0.773 0.827 0.819 0.808 0.819 0.795

+ Semantic 0.815 0.761 0.956 0.847 0.878 0.901 0.751 0.819 0.802 0.805 0.802 0.778

+ Position 0.820 0.767 0.957 0.851 0.887 0.908 0.772 0.833 0.807 0.791 0.807 0.779

+ Thr. Crt. 0.817 0.765 0.949 0.847 0.872 0.884 0.749 0.811 0.799 0.792 0.799 0.774

+ Morpho. 0.832 0.776 0.965 0.860 0.890 0.907 0.781 0.838 0.816 0.815 0.816 0.789

+ Word Cnt. 0.830 0.779 0.954 0.858 0.893 0.893 0.804 0.846 0.814 0.797 0.814 0.783

LSP 0.786 0.742 0.921 0.822 0.863 0.861 0.748 0.801 0.771 0.725 0.771 0.739

+ Semantic 0.837 0.824 0.887 0.854 0.879 0.860 0.802 0.829 0.809 0.805 0.809 0.805

+ Position 0.840 0.836 0.873 0.854 0.882 0.844 0.834 0.839 0.808 0.800 0.808 0.803

+ Thr. Crt. 0.832 0.825 0.875 0.849 0.879 0.849 0.814 0.831 0.802 0.796 0.802 0.797

+ Morpho. 0.841 0.829 0.886 0.856 0.881 0.843 0.832 0.837 0.812 0.802 0.812 0.804

+ Word Cnt. 0.829 0.816 0.881 0.847 0.880 0.856 0.808 0.831 0.800 0.791 0.800 0.793

+ Word-based 0.848 0.816 0.927 0.868 0.887 0.861 0.827 0.843 0.821 0.803 0.821 0.802
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interpretability directly for us to gain an insight of the
sentences although the models achieve good performance.

From the experiment results using Lasso, we can find that
the recall scores for classifying medication sentences are bet-
ter than those for symptom ones, while the accuracies and
precision scores indicate the opposite trend. As we use multi-
class classifiers, many of the test instances are classified as
medication class. The Lasso models trained on the word-
based features slightly outperform the ones trained on the
LSP features. As Table 4 shows, the weights of the LSP
features are much smaller than those of the word-based ones
in Lasso.

For the forest-based model, we can find that the accura-
cies of medication and symptom class can both achieve more
than 80% with only LSP features and UMLS semantic type
features. The overall accuracy achieves 80.9% and outper-
forms the other methods. Besides, with LSP and UMLS
semantic type features, the precisions and recalls of both
classes are greater than 0.8. Moreover, with position feature
and word-based features, the performance of the forest-
based model is even better. In general, the random forest
model can achieve the relatively better F1 scores for both
medication and symptom sentences classification. Similarly,
the random forest models trained on the word-based features
slightly outperform those trained on the LSP features.

Although it is not guaranteed that the models trained on
LSP features outperform the ones trained on word-based fea-
tures, we would still like to take advantage of LSP features
since the feature dimension is significantly reduced without
sacrificing the discrimination ability of models. In addition,
LSP features provide a valuable perspective in both tag and
structural levels to interpret classification results for health-
related sentences.

5.3. Interpretability Evaluation

5.3.1. Interpretability of Lasso. Table 4 lists the features
with the largest weights in the combination of the
word-based features, LSP features, UMLS Metathesaurus
semantic type features, position feature, thread creator
indicator feature, and word count features. After learning
process, dedication-related features are assigned negative
weights, while potential symptom-related features are

assigned positive weights. Meanwhile, most of the word-
based features have greater weights than the other features.
The words “avoid,” “prescribe,” and “increase” are the most
signaling words in medication sentences. The possible rea-
son behind might be that medications usually require
patients to avoid certain things, to take prescription drugs,
or to adjust the dosages. The words such as “bleeding,”
“anxiety,” “swelling,” “migraines,” and “fever” are common
for symptom sentences in the forum, as they express
external physical injury and mental diseases.

For LSPs, they are usually assigned with positive weights
as they are capable of mining the symptom terms in the
sentences. The pattern (PRP, PRP, RB, SYMP), for example,
is common for symptom-related sentences like “someone
suffers from some symptom frequently/occasionally.” How-
ever, we also find that the tag SYMP is very frequent in both
medication and symptom sentences, which is due to the
reason that Lasso could not achieve good performance using
LSP features, and is also hard to interpret the differences
between class medication and class symptom.

Several UMLS semantic type features are assigned
relatively larger weights to identify symptom sentences. For
example, the term “sosy,” short for “sign or symptom,” is
obviously a useful feature to identify symptom sentences.
The term “mobd” (i.e., “mental or behavioral dysfunction”)
can be used to detect mental disease symptoms. “patf” (i.e.,
“pathologic function”) is a parent semantic type of “mobd,”
which is also an informative feature to detect pathologic terms.

5.3.2. Interpretability of Forest-Based Model. To interpret
healthcare-related sentences in forest-based models, we
calculate the feature contributions from decision trees in
the forest. We select one random forest model with the best
accuracies in the experiments and list the 10 features with
the greatest contributions for each class in Table 5.

In identifying medication sentences, the unigram feature
“prescribed” has the largest contribution. This is because
such kinds of sentences usually contain information about
prescribing drugs. LSP features (PRP, CD, CD), (PRP, CD,
IN, NN, NN), (CD, IN, CD, CD), and (PRP, CD, JJ, JJ) also
contribute to recognizing sentences as medication-related
ones as they all contain the POS tag CD, which represents
the numbers in describing the dosages of medications. The

Table 4: Top 10 average weight of word-based, LSP, semantic features in Lasso.

Word-based Average weight LSP Average weight Semantic Average weight

Avoiding −0.413 (PRP, PRP, RB, SYMP) 0.081 sosy 0.329

Wrong −0.363 (PRP, PRP, VB, SYMP) 0.060 mobd 0.207

Avoid −0.343 (VBZ, CC, SYMP) 0.058 patf 0.190

Prescribe −0.323 (SYMP, SYMP, SYMP) 0.054 resa −0.173
Bleeding 0.283 (PRP, SYMP, CC, SYMP, IN) −0.053 inpo 0.100

Anxiety 0.281 (CC, SYMP, IN, SYMP) −0.052 anab 0.094

Swelling 0.233 (PRP, SYMP, VBG) 0.049 mcha −0.092
Increased −0.185 (RB, SYMP, VB) 0.048 aggp −0.090
Migraines 0.185 (JJ, IN, JJ, SYMP) 0.036 plnt −0.063
Fever 0.160 (NN, SYMP, RB, SYMP) −0.033 mamm −0.052
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morphological features are selected as the names of many
drugs are capitalized terms or abbreviations. The UMLS
semantic type feature “hlca” (i.e., “health care activity”) is
important since healthcare activity terms are commonly seen
in medication sentences. On the contrary, if a sentence does
not contain LSP (NN, SYMP, SYMP, CC) or “sosy” (“sign
or symptom”), or is not posted by the user (thr. Crt. = 0), this
sentence may also be classified into medication class, as it is
less likely to be symptom-related.

For the symptom class, the UMLS semantic type features
“sosy” and “patf” are among the top relevant ones since they
are capable of detecting symptom terms and pathologic
terms, respectively. Thread creator indicator is also useful
since symptom sentences are mainly posted by users to share
their situations and ask for more information. If a sentence
does not contain the word “prescribed,” then it is less likely
to be medication-related. LSP features (SYMP, SYMP,
SYMP), (NN, SYMP, SYMP, CC), and (SYMP, CC, JJ) are
selected since there are usually multiple terms matching the
tag SYMP in symptom sentences. The position feature is also
important in identifying symptom class, as it is natural for
users to mention their symptoms in the first vth1 posts, where
vth1 is a threshold learned by the decision tree. Similarly, if
the number of words from a sentence is greater than vth2
learned by the decision tree, the sentence will be more likely
to be a symptom sentence.

Compared to the feature ranking in Lasso, we can have a
better understanding from the feature contribution rankings
for each class in the random forest. The relationships
between features and classes can be learned from the feature
contribution vectors while Lasso only provides the weights of
the features, which may not be expressive enough to repre-
sent the relationships between features and classes. The
random forest model can achieve both better performance
and interpretability compared to Lasso.

DPClass [8] proposes to take further advantages of the
discriminative patterns in a random forest built on the train-
ing set. The selected DPs can help users gain insights of the
data. In the experiments, we chose K = 30 to obtain the top
30 DPs. Table 6 lists the selected 10 DPs of a forest-based
model trained on all proposed features. For example, consid-
ering the discriminative pattern ((RB, CD, IN, IN) =0)∩
((VBP, IN,CD,CD,NN)=0)∩ (“mg”=0)∩ (“prescribed”=1)
∩ (dsyn= 0), if an instance satisfies each rule in the pattern,
its corresponding DP feature entry will be set to 1. The
existence of this pattern increase the likelihood of classifying
the instance into medication class in the decision tree. From
the patterns in the table, we can find that the terms matching
tag SYMP are likely to occur in symptom sentences, while
tags CD and DRUG often lead to nonsymptom leaves as
they are more likely to occur in medication sentences. In
another word, symptom sentences usually contain symp-
tom terms while medication sentences usually contain
drug terms and numbers which represent the dosages of the
medications. In addition to LSP features, there are two con-
spicuous unigram patterns “anxiety” and “cough,” because
the training set contains many sentences related to anxiety
and cough conditions.

6. Related Work

Previous medication information extraction research mainly
focused on extracting medication information from clinical
notes, such as [22] using conditional random fields to iden-
tify named entities and support vector machines to build
one-vs-one models [23], using a variety of drug lexicons
and [24] using semantic tagging and parsing. Sondhi
et al. [3] use conditional random fields and support vector
machines to classify texts from online health forums.
Wang et al. [25] propose an unsupervised method to
extract adverse drug reactions on the online health forums.
Bian et al. [26] propose to mine drug-related adverse
events on large-scale tweets.

Our work focuses on both classifying and interpreting the
online healthcare-related texts. The major challenges in
healthcare-related text classification and interpretation are
how to represent the texts and how to classify and interpret
the data. For the former question, [3] proposes to use
word-based features, semantic features, and other heuristic
features. The problem of this representation is that word-
based features have a huge dimension, but the data are usu-
ally sparse, which introduces considerable computation costs
for feature selection and building models. Ding and Riloff
[27] propose to represent the texts using word features, local
context features, and web context features. In addition to the

Table 5: Top 10 feature contributions for medication and symptom
class in a random forest model.

Feature Back. Med. Sym.

Top 10 FC for
medication sentences

Prescribed = 1 −0.00275 0.01195 −0.00920
(PRP, CD, CD) = 1 −0.00251 0.01156 −0.00905
Morpho. = 1 −0.00206 0.00660 −0.00455
hlca = 1 −0.00071 0.00559 −0.00489
(NN, SYMP, SYMP, CC) = 0 0.00115 0.00429 −0.00544
sosy = 0 0.00191 0.00406 −0.00597
(PRP, CD, IN, NN, NN) = 1 −0.00075 0.00402 −0.00327
(CD, IN, CD, CD) = 1 −0.00120 0.00396 −0.00276
thr. Crt. = 0 0.00154 0.00381 −0.00535
(PRP, CD, JJ, JJ) = 1 −0.00086 0.00362 −0.00276
Top 10 FC for
symptom sentences

sosy = 1 −0.00589 −0.00783 0.01371

Prescribed = 0 0.00234 −0.015734 0.01339

thr. Crt. = 1 −0.00381 −0.00683 0.01064

(PRP, CD, CD) = 0 0.00271 −0.01264 0.00993

(SYMP, SYMP, SYMP) = 1 −0.00330 −0.00564 0.00895

(NN, SYMP, SYMP, CC) = 1 −0.00209 −0.00667 0.00876

Position< vth1 −0.00334 −0.00540 0.00874

patf = 1 −0.00254 −0.00379 0.00633

(SYMP, CC, JJ) = 1 −0.00172 −0.00404 0.00576

Word count> vth2 −0.00131 −0.00423 0.00554
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large and sparse data in word feature space, the web context
features are generated online during the training process
by querying Google and collecting titles and snippets,
which could also introduce a significant amount of crawl-
ing and extracting computations and increase the feature
representation dimension. A method to represent the texts
in a space with low dimension is proposed in [10]. This
method adopts the labeled sequential patterns as features
and achieves both decent performance and efficiency. For
the latter question, in terms of modeling and enabling the
interpretability, Lasso [21] is proposed to enhance both the
performance and the interpretability of regression models
by tuning the parameter to shrink the features. Features with
greater weights can be considered as more important,
which enables the interpretability of the regression models.
Tree-based and forest-based methods, for example, CART
[17] and random forest [9], are also widely utilized to
handle classifying and interpreting the data using the
decision rules in the trees.

7. Conclusions and Future Work

In our research, we propose to use labeled sequential patterns
to represent the healthcare-related sentences in order to
reduce the dimension and sparsity of the data, which can
both guarantee the performance and enhance the efficiency.
Then, we build forest-based models on the training data
which is capable of predicting with decent performance and
interpreting the healthcare-related sentences by extracting
the important features used in the decision rules, ranked by
their contributions, and the discriminative patterns consist
of the decision rules. Overall, the forest-based models trained
on the proposed feature space can achieve good performance
and enable the interpretability of the data. In the future, we
will build a compact system based on this framework to help
users directly extract and highlight the insightful sentences
while they are viewing healthcare-related articles, posts, and
so forth Moreover, we will also target to extract and interpret
the insightful sentences from other categories such as
medication effects and user questions and include data from
other sources like clinical notes.
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